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Abstract 

We have looked into varic~'~ ~-~:,bi!Lt~ ~4th~a,stt~fie field L~-n~,, , # ~  ~mrt~a|a: 
attention to the case ofg = 0. Tbe~ ..- ~ s~'aa~'~e~ ~ be ~s,~ated ~Mtl~ the in~ml~icm 
of Newtonian absolute time into aesthetic field the~-.  It f.2:~ ~ argued ~I,~! Lorentz 
fnvariant boundary conditions for the universe are unlikely, gMag .;m~tus ~ Ibe ~ d ~  
o fg  ~ 0. We find that the field equations had to be moktified from the form lhat fl~y take 
when g = 0. Mso, an infinite number of integrability equations have to be satisfied W, 
have required_ thai our data have an underlying structure that is invari~:i ~ad~r 
~'~3) x T. ~ ~:~ ~Tdz, ta appeared satisfactory with respect to Ln:egrabiliry and gave 
r i ~  ~ minhnum ia g,~ af tbe oriNn. After a long computer run Nong the coordinate 
~.xea, we a ~  fa~nd a I m , ~  on our pa~h:l~;ike object. T ~  is t he tk~s t time we have been 
able to obta~ ~ r  a resell 

L Intraduction 

Ina ~r ies  o f  papers (Muraskin,  1970, 1971a, t971b, 1972a, t972b; 19Z?c; 
Muraskin  & Clark,  1970; Muraskin  & Ring,  1972a, 1972b), we have been 
studying a field theory  based on mathematical ly  aes~et ic  priacipies. We 
introduced a change function and then required that the change r u n , i o n  
determine its own change in the same manner  that  it causes the change o f  
other  tensor functions. This led to the field equations for the change 
function 

~r .~_  ~ ,, I m r ~  
0 . ~  - r l ~  r j ,  + r j,,, r , , ,  - - ,,, . , ,  ( 1 . 1 )  

However ,  within the f ramework o f  such a field theo~" there still remains 
various possibilities to consider. For  example, we previously pointed out  
that  the integrability equations can be most  simply satisfied by the con- 
dition R~j~ -:  0. But in a separate paper (Muraskin,  1972c), we proved local 
existence also when/~j~z # 0. Now~ if Rt.m = 0 at one point, it follows that  
R~jk~ = 0 at all points, as a consequence o f  the field equations. Thus, the 
R*m = 0 and R~j,~ # 0 theories are distinct. Some further criterion would 
be needed to decide between these ~vo possibilities. At  present we cannot  
say 'with any assurance which situation is, apriori, more reasonable. 
Copy'r~/tt  ~ 1973 Plenum Publi~b3ng COmpany l .A~ted. No  part  o f  th~ pu.Micatlqn may be .reproduced, 
t torcd ill it r~trlevlL I system, or  tral~mlLte.o, ltl ayty tor'.n o r  oy a n y  m~an,% etectrontc, mechanical, '~hoe.A>- 
~opy/n~ ~ f i L m m g .  recording or  ota~rrwise, wlmotat wfit~e,~ ~.~ss~o~ ef P / r  Ptlbi ishi~ Company  
lAmited. 

213 



lr~ this paper, we shall study some oLhe, ~ possible freedt~ms consis~m 
with the riolJon !h~t *he change f~nclion de~ermines its own change. 

A~ for  results--wortSng with .a situatio~ v:aber~ g = 0, we have made a 
long-time computer run along ~he coordinate axes and found a bound on 
alaartiele-like o b j e ~  TNs is the first time we have come across strch results. 

2. The Detemdnant of g~s 

The second-ra~k symmetric teasorg~j obeys the equation 

= 0 (2.1) 

This ~ a a t i o n  can be obtained by introducing four basis vector~ 

Up to now, we have aiw=ys chose~ g, ,  to  be the MinkowskA metrL~ 
( - 1 , - I , - 1 , 1 ) ,  and thus, the de~erm~nan~ o f g  is a~ways negative. Howeve,:, 
the choice of the sign of g is not so cm ~ ,d  dried ~a~d should be open to 
discussion. We note, as a consequence of  the fie~,~ e~quat.or~, tJ~e s~:gn, o fg  
~r preserved at all points of space-time5 

Laazeos :!966) has in_troduced g > 0 some time ago, arguing tha~ s~2cl: 
a cho.~ee-it0es no~ c~;~r~i~ Wave morion, In our previous work (Muraskin, 
1972a) We Found ~ a perturbation calculation of equation (1. I), that wave 
motion app~rs  in fir~ order. This m.~nlt was independent of whether g 
was negative or positive. Thus.  we should keep in mind the possibility of 

.determinant positive. AB the basic equations of the theory remain un- 
changed in this case. Thus Nr, the difficulties with g > 0 are ihzt it is very 
difficult to find solutions of  the integrabilhy equations together ,~fith the 
ir~nite restrictions that all invariants be zero at the origin. This latter 
Condition is necessary so that the natural boundary conditions FJ~ -+ 0 at 
infinity be satisfied. At present, we have no proof that these conditions 
cannot all be satisfied. 

What about determinant zero ? This situatidn is more complicated s in~  
g~S is now singular. This impl~es that it is necessary to rederive the field 
equations, which we Shall do later on. The field equation in this case will 
differ from (!.!). 

.A reasonable boundary condition i s  e=~--~5~ at infinity, and thus 
g~ -> g=~ there. Another possibility is e~ --> 0 and thus g~ --> 0 at infinity~ 

By requiring g~ --> g,:  at  infinity, the choice ofg,~ can be related to the 
invariance group at infinity, g ~ = ( - l , - l , - ! , + l )  is invariant under 
Lorentz transformations, g,a = (I, 1,1,1) is invariant under four d~men- 
sional rotations. Finally, g=~ = (1,! ,I ,0)  which has determinant zero, is 
in variant under 0 ' (3 )x  7", where O'(3~ desci'ibes three d~mensional 
rotation s~ and  T refers to t ime  trm~Iation. We note g=~ = (I, 1,1,0) appears 

S.The prime denotes that the rdtations are in.homogeneous. 



~ i n ~ A n d e r s o n  (1967) and Trace.mann ( ~ 964) in the d iscu ssion o ~ e w ~  o~ ia,  
pl~'~i~ usNg~he objects g+~+ FJ~. N the g -. 0 s+~ation, g~  i~ abe  iuvm~,aut 
trader a wider group+ However, as in Anderson (page I1N we may also 
~tu~re  that the unit vector (0.0+O, 5) be invariant under the transforrrmt~on 
group. T t ~  .~estricts us to O '0 )  x T. 

Tht~s, the choice o f g ~  may be related to the invariance group at influX'. 
I~ ore" pre~ioas par, er~ , we have exclusively eonsqdeved lhe. ease g~e-= 
( - - I , - I , - -1 ,1) .  Howe.m. it could be a~ued ,  from a fundamental point of  
~ v ,  that there w,~y be an inherent weakness in requiring tha~ the laws 
of!physi~  be the same for a~ merliat systems. That  is, the universe has 
t m u n d ~  conditions which may be argued to be non,Lorentz invar{anL 
An alternafi~,e hypothesis is that the boundaxy conditions should lead to 
a Newtonian absolute time. The invariance Woup woutd be O ' 0 )  • T 
as defined by the invariance ofg,r  = (1,1,1,0) and the time-like v.n~. vector 
(Q,0,0,1). 

We feel that the case of'g -- 0 is worthy ot'ad~thiona! s'.~dy. 
Although we have emphasized g~v -> g,~ above, we do not n-~e~ to d~'~, 

a~y del~itive conclusions at this point in regard to the boundary, condition~ 
The s~t~t~ov, g~:-*. 0 at infinity is still a possibility. 

In this section we sha~l ob~Mn fl~ equa~ons m ~ = 0 u~x:~< 
In equations t ,!. 1 j and (2.1), we note the presence of  both covaria~t and 

contravariant indices. This situation would be what one would expec~ iT 
g~s has an inverse. That  is, from 

Al = gl~A "~ 9 . I )  

we can define A s. Suppose we are dealing with the case ofga= 0. Consider, 
for example, gu = (1 , t , I ,0 )  at a point. "lYnch in (3.t), when i = 0 ,  we get 
A o = m which is not an allowed field. We could, if we waat to, introduce 
independent fields A q, At, g'~j, gu etc. Rut, th~s is not the simplest thing 
to do. What we shall do is to only work with tensor quantities having 
subscript .indices. 

In the system where g = 0, for the change of  a vector field, we write 

dA, = A, , ,  A,~ dx, 0.2) 

Note. the order of  indices in the change function A,.~ is of no significance, 
That  is, if  we hacI written instead 

dA, = 0,~,, A* dxk (3.3) 
we could de.me A~,u, --- O~..~ and [hen get back to structure (3.2) What we 

. . , ~  is of  no importance. It wil~ be deter- ~I1 the change r u n , i o n  ( A ~  or ~ '  
mined by the same field equations. 

In (3.2) the summation over repeated indices is und~stood from this 
examp!e; A,,B,, . . . . . . . . .  Bz + Ao.~%. ~ ' - -  we are ~.~..uv~v .e'tl l~ 1 t A2A~ 2 t ~3 lldU~,~ _e__2:.._1.. 
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2t6  ~, m ~ , a s g ~  

/ n m . x l ~ i n g  a m e t r i c  ( f ,  ! ,  I ,  t )  which  def ines  sa~ | a r  produc~:< It wilt 

rdon, arc not dynamical quantifies. 
The  cha~ge o f  gr is given by  

The change function de~.ermines its own change a~o rd ing  Io 

~x~ = A ~  A,m + Al,,~ A~,~ + Al~ A.~k~ (3.5) 

Consider a %nc~ion of  the field variables that has a contraction in some 
index, for  examp|e ~,  _-= g,sAs. Then using (3.2) and (3.4) we see that 

Thus, it appears that not all vectors are treated in the .~rne way, s~ fa~ 
as their change is concer~ed Tibis mjgh~ appea~ t~<~ w mean tga~ tile 
g --- 0 theory is Iess 'aesthetic' than the g # 0 situation. Hawever, on closer 
~ a J u y ,  this n ~  not be considereA the ,~se. l_s us re[un~ "m the g # 0 
ease~ We can define B ,  u~m = A ,g  - :d~ where Nff) is a non-dynamical metric, 
such as ( 1 , i , i , I ) .  Then we get dB~ r F4 B .r Thus~ the conclusion is 
that  objects . . . . .  i " mvolving non-<xynam|ca| qaanLt~es do not oL~v the equ~!ions 

OT~A . . . .  .r,s... F ~" m win..  r.~ ~ . -  r~ ~,1..: 

- r . . - .  , .  = 0 0 . 6 )  

Of o(m " ~ "  TEat is~ T u'':~=.., is a fun~ t~c,~c. ~."~" F~,  g~s but ~ot ~ u "  [ ms situation is no 
different in g = O theory. The expression B~ = .g:~A~ in g = 0 theory means 
B, = gug~(e ' )A~ and thuS, it invoNes-a ~on-d~-namicaI quantity. Tb, u~, we 

' q  - ~ .  ~3.2) �9 ' do not expect a retaL.onsh~p of-the type to ~o~d for this B~. A!! :cr~or 
quantities of  lhe dynamical fields go, A ,~.~, A~ behave in a uniform ma <~.:~er 

fax as thek  change .is concemedo From *~;" " " �9 . .,,,s follows e q u a h o ~  \~.~, ;'~ ~' 
(3.4) and (3.5). 

When g r 0 we had that all scaiafs were constant. In the g = 0 case, we 
have m be more careful  For  example, we have 

: ~  = 2~ , ,4 ,  a , , .  0 . 7 )  

T h i s  is not, in general, zero. We could ge~ atl such quantities to be zer9 if  

- A , a  = - A . . .  O . S )  

We can see i n s ,  in genera1, by conaidering 

Oa"'"""s=),,,~A,,~ , .... a. " + A , , , A e 2 . , ~ . . ] j . : . + ; : "  C3.9) 
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luterchangi~g the dummy indi~a m at~d i ii,~ the f i ~  *eg~r., o~ *~e fi~.ht at~d 
USit|g *,a= h Wc Sr ~ get ilo r f~3i~ ~.v~ltl~t~u lrtt~;~ i.*.~ 
~A, , . . . , . . . /~x~.  Note also, thin if O.S) is satisfied, e• l ~  
B, = guAj  will obey equations of  the ty~pe (3.2). 

-At any rate, the =suit  0 .7)  is not u n e x ~ t e d .  In g # 0 *hooD% if we 
~ n s i d e r  quanthies with a non-dynamical metric such a_s A~A,g *jm), we 
lind ils cbm~ge is not zero either. 

I:a order t'~r the. mixed derivatives of  A~ to be s ~ . ~ m ~ e ,  it is necessar~ ~ 
that  

&,B. . ,~  = 0  0 . m )  

B~t,a =-Aa. tAt~-AauA~, ,e  + A u ,  A , ~ - -  A~t,,A,,,. (3.11) 

The mixed deri,v~ives o f g ~  are s3mametric if 

The mixed derivatives o f  A ~  m~ s},mme_~s ~f 

We note that the m~xea aer~vat,ves of  products ot A~, g,s. .:*~s~ are g. m~:,::~. ~ ~c 
i;(3A~L (3.12) and (3.13) are satisfied. 

�9 Ifw~ fim~ ~ simple set ofdata  that satisfies these: equations we can go}aerate 
a more complicated a ~  ~g da*a hv using 

Au~,---- e,,te~.~e~ A~:.: (3.14) 

where A ~  a~e the simple set of  da~a and e=~ represents a general four- 
dimensional orthogona[ matfix~ 

The consistency equations are most simply satisfied if we t a ~  

B.=~=0 O.15) 
At this poin~ we notice a complication tha~ is absent in g # 0 theory~ We 
can no longer show that if (3.15) is satisfied a: one point, then ~t is satisfied 
at all points. I f  we compute the derivative of.~.,~,,a we get, on using the field 
eqnations 

Ox~ 
(A~a + A ,,,) (A~.,~, At, r - A~,~ Am, + A,t,,, A n~ - . A ~  A~c~) 0.16) 

Making use of  (3.15) at the orig{u is not sufficient to make (3.16) van'.,sh as 
we~. (Although we note 0 . I6 )  does vanish if (3.8) is satisfied.{) Higher 
derivatives of  B,~,,i would not be expected to be zero either, i n  general. 
Thus~ the g = 0 theory is in danger of  not leading to a consistent solution. 
However, t h e e  is a possibility, although one would think ratIaer remote, 

t Ifea -+ ~.~ at infinity. A.~ is a function *afx so tha~-5~,~ -+ 0 at i~uit-]. 
~. Equation 0.5) than, has a simiiar.forrn~j s,,"u~tur~ as (i.i), 
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that there exists a set o f  data a~ ~ {'..e origin such tha~ all of~he derivatives of  
Ba,~ jusl . . . . .  vamsn. . . . . . . . .  e = r~ ~' . . . . . . . . . .  - ' "  ~- ..... ~a be oapFzn to ~nf:u t~-~ $ ., tuz,_~y wt, um ,~ot , m ~  
fliscarded. 

We have been working with a set of  A.ar dam with attractive group 
theoretical prope~ies~ A=a~ is required to be invariant u n d ~  an O'(3) x T 
transformation. O m  set o f  data has some remarkable properties. For  a 
choice of  parameters, this set o f  da[a ~tisftes 1-~.'-~1. ~_ncn, w:mou~ any 
f m ' t ~  adjustments, we find 0-16) is satisfied as well. We have not been 
able to prove that all derivatives of  B,=~ are zero at the origin ana~yticMly, 
as ~,ere a ~  a a  ~fmite  ~um.h~. o f  conditions to be  satisfied. Hog, ever.  
w ~  we h a w  done is to m z k e  ~ ~ m  of  3CO points down the x-axis (at -0003 
grid size). Then we calculated B,,~, n u m ~ c a l l y  at tiffs pe~nt using the 
computer. We found 1hat B,,,~ was zero to twelve decimat phces. Thfs 
was the same orde~ of  accuracy for which Ba,.~ was zero at the origin. 
Furthermore, we ran r po~as  down ~he xoax~s w~tr~ g~id ~ ( } 3  and ~0 
points down the )~axis ~4th gr;d -CL~04 and compared this situation where 
the y-axis run yeas first and the x-axis r a~  was seco~d~ We g~*j~ agr~ment~ 
for all Aij~ and gtj to twetve decimaI p~aces. These ~:es*2 were aiso repe2ted 
~ir during our long runs. We found B , ~  yeas zero ,~n a11 cases 
again Io ~:e ..... -"  ~.,,,.r o f  twelve dedmal  places.f Thus, these resv~r~ str~nz~v 
imply that our g o ~ p  theoretical data does, in fact, lead to an accep~aNe 
g = O theory, so far  as , , ~  " " _:,.~. bihtv is concerned even though we have not 
been able to ~ive ~ "~' ~" ,,~ e~.,., - . ~. nvo.ous prooi o. ,,~.al existence. 

T o  further i~v'esti~at~ this probIem of  Ln:te:q: ~ !~iiky. we consider another 
set o f  A~ ,  data #~en  by 

A , t  = - 1  

A,~I ----1 
Alot = +1 
A211 = - 1  
A221 = --t-1 

.Ai ,  t = - 1  
A2ot = + 1  
A~i t = - - I  
A32t --  + l .  
A331 = + l  
Azo~ = ~1 
A o .  = - I  
Ao21 = + I  
Ao~: = +I  
Aoot = - - !  

A , = = + I  Al1~=+1 - A u o = - I  
A i m = = 1 .  Al~3 = - I  AI~----+i 
A132 "= +1 A13 ~ = +1  Aj lo  ~ - - t  = 
Axoz --- - 1  Aio3 = - - !  A~ee=+t  
A212 = + 1  A 2 1 s  = + t  A 2 i e  = --~[ 
Azm = - !  . A223 = - - t  - , 1 ~  = + 1  
A:,2 = +t  Az~3 = + I  Aa2o =- -1  
A2o2 = - 1  *.A2o 3 = - I  A2oo = + i  

A3t2 = + |  A3t3 = - 1  A z t o _  , 1 - - -T ' I  

A322 = - I  A3z~ = + !  A320 = - 1  
A332 = - - I  A333 = +1 A33o = - 1  
Aze2 = +!  A,o3 = - - f  Azoo = +1 
2 J ~ l  2 = "+1 Aol 3 = --1- Aoio -- + I  
A022 ----- --1 )1023 = + I  -{020 ~- - - I  
A032 = - I  Aoz~ = +1 A030 = - - 1  
Aoo~ = +1 Aoo3 = - - I  A r  = + l  

(3;17) 

This ~ t  of data obeys (3.1~ but not (3.16). Another ~ t  of  data that satisfies 
(3.15) but not (3.I6) has the following non-vanishing A,e~; A~z3, A~2r 
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A;~i 3, A2,o, A2~:~, Aooo- Furthermore, after an e,i transformation and a rtm. 
of  300 points down the x:a~s, (13.13) was no! satisfied by effher :~ata Th~s:. 
the conclusion is that, in general, we cannot expect integrability to L~ 
~atisfied in g = 0 theory even when (3~ t 5) is satisfied at-the origin. 

We may next ask whether there are other sets of A, a~ other than cur group 
theoretical data for which (3.16) holds and B~,,~---0 is preserved away 

example is the following. 

At:it ----- 4f2. A m  = $, 

A2tt = 5 2  A212 = $, 
A22t = 41~" [ (1222 = 412 
A231 = ~0 " A2~2 = *#a 
A~.), -- d?a A2o2 = qSo 

. /1~c=:r  a~;_ = $~ 
Ar ~ka Ao= = 41o 
Ao~l '= d?2 A~.~2 = d?vi 
Aoo:---'- r A + ~  = qh 

A , , . .  = 4 ~  

A223 ---- $3 
A233 ~ ~2 
A2o3 = ~bl 
A313 = ~1 
A323 = q52 
"1_,33 = ~ 
A~a  = ~o 

Ao03 = ~3 

n x s o  = 4~2 
A~oo = ~51 

A~--- t#o 
A23o -- ~ 
A2oo = 4'2 
Aalo = ~b2 
A3:o = ~ 1  
Aa3o = r 
A,~oo -- r  

A ~ =  4,0 

This data obeys the integrabHity equztions ~o computer ac~:uracy. However, 
there is an ob~4ous difficulty with this data. We note ..1=~ v is symmetric in all 
indices. This symmetry is preserved by an e=~ transformation add by the field 
equ.ations. Now, if we write out the field equations for 3Alx,/.ax~, we see, 
using the symmetry of A~a-~. that the right-hand side is made up of  terms 
whictt are all squares. Thus, AI~ wilt continue to increase monotonically 
as we move down the positive axis, leading to a singularity. T~us, not all 
data satisfying the irltegrability equations (to eomputer accuracy) will be 
acceptable. With our group theoreticai data, it is not obvious at the outset, 
one way or another, whether a singularity will develop. We wili have to 
make long runs away from the origin ~o see what the trends are. 

As in our previous work, we seek a minimum (maximum) in goo- At the 
origin, for simplicity we wilI work w~,.;,~ g~+ = (t, 1,1,0).~" Using (3.4) we 
get (a = t,2, 3) 

ax. 

~f;S/rict|y speaking, we should use (7.9) rather than g~t=(1, I , I ,0)  at the origin. 
Hqwevei', it is much s,.'~p!er to work ve~th g~ = (I,1,I~0), and we Shall do so here. Note, 
At~ are not. ~ffe~_3.ec,-J zby our choice _of the_ value ofgi~ at the orion. 



bfLr~A~, 

Tt~us, goo is automatically an e x ~ u m  if we use g~j = (1, L ~,0) (note, 
~_ . J . a ~  comes out to  be zero as wellL From ~t~e fi.,d eq~;a~6ons (3,4~ m~d 
0~5), we get a~ the origin 

~l.f,--'- *~ floo = 2(Awa A~e. + A2oaA..,b + A~o~, A~t~) 0.19) 

detA~ > 0 O~Oc) 
We define 

a .  - A , . ~  

c, =- Azo,, 

Using ~,~,.~gsz2; ~ znd 0 . 2 t )  we :x-'. -ihat (3.20a) is satisfied if a~, b~, e, are not alI 

ial hi * r 

la3 b~ c~ I 

Tm~.  ;fa,  b, e are not mu~up~es of  one ano*,~er, tne~. we w~ll have a mira;mum 
at the origin for gc~. goo can never be a max i m urn once we take g~s = (I, I, l, 0) 
at the origin since (3.20a) is the sum of  squares and ~s always pps~tive. The 
sign~cance o f  this result is not clear. It  is true that i~ ~ravitationa! ~:heory 
one can have only one sign of  mass. But it is certainly premature to draw 
a[12~ ~ o ~ i k t u s I o l i  a t  [ h i s  stage" in o u r  c a s e .  

Note, it is not so simple a 'mat ter  to obtain a minimum for geo. _For 
.eyamp!e, consider the data given by (3.17) as we.~i as the case when A~z, 
Az~, A2~o, A,~, A~3z, Ar are the only non-zero A,a~, Both cases give 
rise to (after an e,~ transformation in each case) 

la~ b, c,{ 
a~ bz e z ! = 0  (3.23) 

to twelve decimal ptaces at least.. Thes,  we get no minimum in goo at the 
origin here. 

We shall find, 0n_the other hand, that our ~ 'oup theoretical data does 
give r i~  to a-min_[murn-in g ~  at-the ori#n.  
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A1 ~ b'oim we di~lylay ore" group  tbeored~{ data 

w~h  

g ~  = 0 1 

O 1} 0 O 
a n d  

22~ 

(4,_~} 

p -- ~/(1 - - l :  - m ~ -- n ~) 

n - -  V ' ( !  - -  2 ~ - U ~ -  , ,2)  

e,. e~, -~ 6u (4.6) 
e~ ea: = g ~  

Equat ion (4.6) was checked o n  the computer  foE all our  choices o f  para-  
meters. The parameters that we finally chose to work wi~h are 

. .  : 

1 = - 7  ~ = ' ~  ~" "3 ~ ~- - '~  . . . . .  . . . . . . .  - , , -  �9 p = - 5  ~ = ' 3  ~'~./) 

(4.S) 

Then we get 

w,'th 

r  ~ , . - - - ~ =  ~. = 0 a---- ',, ~ 3 (<3> 

~,~, Js the anlisymmetric tensor, We assume the structure (4A), (4.2) ~_wd 
(4.3) cx/sts at all points (although for our practical numerical work we only 
r~ed ~bis structure at the origin) so our  data would be invariant under 
O ' O )  x 7:, Fxluafion (3.15) is satisfied i f  ~ko = - O o ,  Bo = ~Po, • o - - 3 f r o ,  
~ 3  = ~bo. T ~  pz:dcuLar x~.u~_bers we have chosen for  ou r  computer  work 
are Bo-~ I, ~%-----i, r  = + i ,  ~e ..... ~.o W~I~ ~.Se~e c~,~;~ce~ we found, after 
an e,,tx~x~sfbrmztion, that  (3 ~ 6) was ZeTO ~o compare.raccoon3,,  e~,- ~ ~ a d e  
orttaog~na} by requiring 

= !2  - Fa-{- m# - nv 
e ~  = lz  + t , 2  + r i p  + m y  

elz = - - I v  + p/t -- n2 + rr~ 
e~ o =--ip --a~: + ~ + m2 
e2~ = - - p A - -  ~./+ m y +  n #  
e2~ == --p~ + I)L -- m# + nv 
ez~ = pv + 1# + ~,2 + nzc 
e2o = p p  - -  l r - -  m z  + n 2  ( 4 . 4 )  
e z ,  = n). + m~r + !v  + pp 
e3z = n ~  - m 2  - p l  + p v  

ez3 = - n v  - -  m #  + 12 + . p z  

e~o = - r i p  + m y  - -  l~  + p 2  
eor  = - m L  -j- n g  - -  *T'.§ f l  
eo~ = - - n T ~  = ' t t2  + p f i  + I,V 

eo~ = m y  - -  n i t  . - p 2  + hr 

eoo = m p +  n v  + p z  + 12 



We alto took g~ = : O , i , t , 0 )  ai the origin ~o as to make use of om g~  
minimum equations. ~ i s  set o f  data thee leads ~o a minimum in g~,~ ~t 
the Ofigiu point. 

tn o ~  previous compute~ runs in g r O theory, a gen.era~ 1r~nsf~'matior~ 
ied to  ~'ittrations where a|l sixty2four FJ~ "~,ere diff~ent. In the pI~-esem ca~,  
after an e, ,  transNrmat{o~, we see this i~ ~ot ~the case. There are fmly eigh~ 
different A~ .  All ~he remaieing A,~ are ~W~t~o We can take the d i ~ _ ~ t  
A ~  to be A m ,  A~ef, A~,~, A.~oi, Ai~e, Aiz~, A~a~ Ane. F~A~termore~ somr 
of  these A,~ are constant Irmltiples of  other membe.rs of t~e set. This has 
been demonstrated to computer .~ceuracy, after runniug dowt~ "the dNeren~ 
~xes. It has been found that 3A~.  = A~a.~, 3A:Aa =:A~.a~, 3A~ao --~ A~o~, 
An22 = 3Am.  Thus, out o f  the sixty-four A ~ ,  there are tbur independent 
components. This result is a consequence of  our choice of  A,e. , Whe~, we 
took the example of  A~2~, Ax~o. A2~, A~o, A ~  Aooo as the only am,- 
vanishing A ~  components, we got sixty-four distinct A,~ after the same 
e~, transformation,__ 

i~ this dimird~h,~ng c f  independent components an asset or liability? 
Thi~ is ~ c ~ t m  s~'.  I~ may L~ tbxt si• pieces of  information at 
the criSgin is ~:oo much. "~ae ~ir~*~ oflh~s pre~e~t mve~!ga~ion is to seek 
out possibilities c~nsiste.~LwRb, d~e no~_iea ~ e t  ~hc chang,: {'.m.,.zEo,.: deter- 
mines its own change, q~.e number of  paFameters to be sp~ified m ~.~ 
origin is not ~me~hing that ~:.~: can make definitive stal'ements abou~ at 
this time. 

5. DisaJ~io~ 

In our  work on aesthetic field theory, ~h~,~ far, we have brought up (with 
varying degrees of  discussion) several possibilities consistent with the 
program that the change fimction determines its own change. They are: 

(a)  .Rt j~  = 0 o r  R l ~ l  # 0.  
(b) g positive, negative or zero. 
(c) Symmetry restrictions on the change flmction, such as A,j, = - A  m. 
(d) Higher dinaensions (Muraskin, ~19-/2o). 
(e) Number of  pieces of  indepen~eni data that have to be suppt[ed at 

the origin. 
(f) Introduction of  non-dynamical concepts such as metric and dimem 

sion. , 

These diftbrent poss ib i th~  when characterized by an exact set of  data 
at the origin point, serve to define a u niverse, whether it is correct or not. 

�9 . 

I f  we could find a universe ~,.',~ which interes:mg things happen. ~ is  would 
be our immediate aim. We have a ready found in our previous work; some 
un_iverses to be more interes~ng thar~ others. For example, we presented a- 
choice of  data in Muraskin & Ring (I 972a} which led to a minimum in gt~> 
Other da,a used m Mnrasr.~, (1972b)a~d not lead ~o a maximum (minimL~m) 
ing~ anywhere. There is hope that we miebt find a set of  data for wh~n e 
bounded particle exists, If., in the fi~ture, we ever found m o re  than one 



l~tticle, t h ~  we could see- how they move wi~h respect -~o o~e, aamhe~ 
_enabling t*s to m~-~_tig~Ae f__~c_e laws. These force |aw.~ co,.~M ~ eomp~_~  
with phenomena in the real world. The aeslhetie field theoD ~ Mth N~ i~s 
distinct poss~ilities offers us e potential laboratory of  universes Which we 
ea~ study with the hope r,f uncovering a world containing reasonable 
l~rticle~Iike behavior~ 

mentioned above is most likel% Nor do we know how to choose the dalz 
as to  get optS. ~ ,urn r~u | t s  for each o f  the poss~il~es~ Nevertheless, at 

the moment,  we see no other practical program ~a,~. to try out different 
It~Jngs a~d see what can Ire leanaed. We would like to systematically try 
out all  "the possibilities with l,he computer.  However,  the difficulty is that 
~t i~ no t  a simple matter  te  find solutions to the integrabflity equations 
which are 444 non-linear algebraic eq~at{ons in the R~'~ r 0 situa~.io~ 
and 96 non-linear equat ions when R ~ z  = 0  ( g ~ 0  ~:~ both ~sta.~c~_s}.. 
We aIso have an infinite number of  boundary rend i t ions  ~r g .~ 0. 
We have found in previous papers that there ex.ists soluti~ns to the integ- 
rability equation such that a!l invariants involving FJ~ are zero at infi~fity. 
However,  in no case have we found any acceptable solutions for one reasor~ 
o~ ~ another.  

I~ ~he g = 0 situation ~here :v~e aa  int~r~.: number of  integrabitity equa- 
tions tlaat have to be satisfied. Our greu~ ~,~eoretic data satisfied these 
equat~or~ "~o computer  accuracy,. We ~ '  '~ .............. : . m g c ~ a t  the 
origin. We next discuss ioag-t~meruns on t~e computer  in wt~Jc~ we ~r 
for  a bound to the par6cle-!ike behavior. 

6. Computer Results 

Our data (4.1), (4.2) and (4.3) has led to an i . . . . . . . .  ~ .mpro~emem o . . . . . . .  results 
in previous papers. In our previous long-time computer ru~ ~ Mtaraskin & 
Ring, 197Za), we found a monotonic change of nil fieid :om~c~nents 
throughout the entire run.. That is, those components that s~arte~ gearing 
bigger (smaller) continued to do so at an ever-increasing ra~e~ ~ a,a~, no 
bound was found on the particle-like structure. Note, the data used in this 
case can be shown to rio!ate the boundary condition Fja ~ 0 at infinity. 

On the other hand, a long-time run down the x-axis using our data 
(4.1), (4.2)and (4.3) did lead to a bound on our particle. At x = 0, we had 
goo = 0. This increased io -273 (rounded off) at x = 2.178. We used a gr id  
size of-0003 in reaching.this po.~nt. This took abow: 7 hours ofru~r~ing time 
to reach. A f a r  this point, ,g,~ started to decrease with a stow rate, and 
continued to do so througho~t the rest of  the run. At x = 2.97, g ~  bad 
the value .264. At  x = 4-77i'~ had the value :230. We note a:.so that A m ,  
which sta_-ted off at --133, decreased to - - t  81 at x = ~45, and then started 
to increase again, Thus, a second new feature (in addition to the bound on 
the  goo particle) is that Au~ components were not monotonic. In fact, over 



224 ~ ~ a s ~ r r 0  

turnabout  ~ints~ A ~ ,  A ~ ,  d~o~ each had o~e ~.ur~about p-oint. Finaily 

m~motonically towards zero. A~ x - -  0 we had 

A~I t = " d 3 3  
A ~  = - ' 1 2 2  
a i , ~  = ~ 4 8 3  
A ~  . . . .  77,1 

At  x =  4-,.~ the *~'~)~ oflhese quantities were (we used progressively larger 
grids as the fields got  smaller) 

A~2a = -a4Y355 
A ~  = - ' 0175  

Next,  we ran down the other axes. We tbu~d a bound ie each d.irect~on~ 
The turnabout point for goo and the value c{fgc~.at ~he turnabout point a ~  
given ~ l o w  

x = 2" I78 g ~  = .273 
x =  -1"38 goo = -729 
:~ ~ ~-8~4 -4t3 

y =~--1~ goo = -536 

"l~ne qualitative results for ~ e s e  axes were- s-imilar to the ~:esntts for the 
x-axis. Our Ionge~ ~ n  was down the x-axis (see above). 

All Au~ d ~ e a s e d  in magnitude alo~g the xo-axis. Ato~g ~he --xo-~-~is 
all Au~ began to increase in magnitude but eventtmlly they began to  
decrease. 

We atso at x = 4-77 ran along the 3,-axis to y = 2.4. A ~ ~,~ A~3~, A~e~ were 
smaller in magnitude than what they were at x = 4:77. ~ wan bigger in _ e ~ t 2 .  ~ 

magnitude. But its rate of  increase was already slowir.g down at th~s poiW~. - 
Thus, all the evidence points to a localized partic!e object assoc.~ated 

with goo surrounded by a 'vacuum ~ whe?e the A~ik get smash. 
At  this point we cannot say wherhe1 we have a univer:~e ~ i~.!~ one particle 

in it, and in whiclt A ~  tends to zero at infinit) or wheti~e: n to~  s~ructure 
Will develop f a t h e r  from the origin. The fact that Aej~ gets - ~'"~- 5.T-.~.~,t aS we 
go far*&er from the origin does not mean that Atjk will cont inue ~n this 
fashion with still longer computer runs. That  is, a set o f  small A~j~ need 
not get smaller. To  illustrate this, if we run backwards towards the origin 
the small Aue will get larger. 

Even if there were but a singIe particle in our universe, the resuTts wou!d 
still be remarkable in the fol!owing sense. A problem with g = 0 field theory 
is that we have no handle on the behavior of  A~j~ a t  infinity. VCh,~n g r 0 
we can at least require all-F}~ invariants be zero at the origin which, is 



handle on the boundary conditions since inva~iants are not ~ o  any more~ 
Aposs{ble interp, retation we can e~tract from our computer work is that 
A,~ tends to zero at bffini~y without the need of imposing additior~zl 
txmdb~o~s on the theo~  ~. 

We can say that our p~rt~te is as good as that o f  Rosen (I966), Born & 
IrXeld (1934) or _~derson & Derrick (1970). Our more ~ructured 
FartJc!e d~ff_~, from L~irs in that  ~ ~s n-.~ sphericity s),'m, me,+rc~ It should 
also be no~ed that ont  ~r t ic te  emerges out of  a mathematically aesthet.r 
program rather than from ad hoc hem equations. Also there is a possibility 
that an additional structure will appear with ]onger4ime comp"ater runs~ 

We have inferred the existencx of  a bounded par*dcl~like obje,~ flora 
computer runs along the coordinate axes. Strictly speaking. "eve ~should 
map out regions surrounding the origin. Limitations on computer time 
are a factor here, if we wish to" maintain the kind of numeric~at eccuracy 
we b~ce L~en getting up to now.~ 

7. Dism~_*sion 

tn order to ob{ain the computer vesu!t~ w~. s~eed only to assume the d a t a  
#yen by (-IA)~ (4.2), (4_3)and (3.14) at  one po,2~;_ and then we generated 
~ c  field at all points using lhefield equat io~ C3A) and ~j.5? [-" view of the 
rather remarkable numerical results we have obtained, we may ~sk 
~ e h e ~  there are basic pfin~-ciples at work. W~c5 this in mind,:we hu~e 
made the hypothesis that the underlying sE~L'~iJ~rd-(cILaract~ by g~a, 
A ~ )  is invariant und N 0'(3) • T. 

We have supposed ttmt A~a ~ is constant. ~ in order for A~, -~- 9 m 
infinity we must require e,, -+ 0 at infinity. We have from 0 2 )  

~e. t 
= A.~  e . .  (7.1) 

ox~ 

W e  have taken (4.6") to hold at the origin. We can now see that it does not 
hold at all points. From (%1) we geta t  the origin where we may use ,,4.6) 

0(e,, e~) = (7.2) 
~X, AJfi" {" An* 

Our data (4.1), (4.2) and (4.3) dces no~ satisfy A,j~ = - A s ,  ,. "1 tins, (7.2) 
is not zero. Similarly we get 

O(e,~e.~) 
~x, = ea~e~=(Am~ + A ~ )  (7.3) 

The fact that (72) and (7.3) are not zero is esse~t~al. Otherwise we would 
get an incons'_;stency with the bounda@ condition A~--+ O at infinity. 
This is because from 

e.~ e.~ = ~ (7.4) 

ff We did~ however~ ~ a  ~ to ihe point x = 4 i ~ y  = 2"4 as dL~ussed prevlot~siy. 



we g.~ dete~i -~ e = I, and thus r could u~Y~ g~ to zero at infinity a~d ~II  
h a ~  determinant  one, 

in Sectio~ 3 we discussed the e=~ # Oa t  iufini~ g = 0 situation~ 'l~is 
preset6 section ex&mirres g = 0 when A n has t|~e struc!ure given by (4.1): 
(422) and (4.3). We can relook at 6no of  the problems that came up *t~ore 

introduced_ (4~ (4.2) and (4.3)~ We remember ~ba, contraaterl quantifies 
have a differem sort_ of eb__.~ge t~q~afi~ !ha~ we. mi_~h*_ ~Mve!v s~e._~.. 
For  example, e~ = g~,,,A~,,~ does not act like a vector ~:i~h respect "to its 
change. Thisis the way it should be. We may see this if we express eye , t h ing  
in terms of  e=v We then get for the change-of ck ~he foRowing 

But this is ~o~ ~ e  mine as 
d(e , l  g~a A~a,) (7.6) 

since e**e., is no~ a constantS 
tim foRowing, we ~naii s~mmartze our basic approach, We have 

h-ttrodu~d a change function that des~a-ibe~ the change of a basis vector 
s,~ o f  fields e** according to 

d e e  = A~, ,,e=,, dx~, (7 3) 
The ~ p | e ~  way we ~ n  e~pr~s the A~z: i~ terms of the h ~ h  v e ~  ~s 

With A~r cons, ant. We next require that  A,e., ~e ~nvariaut nnde~, ' thet~ns-- 
formation O'(3) x 7'. A A ,~  that does this, and is constructed from a g,} 
having determinant zero, is given by (4.1), (4.2) and (4.3). We reqtdre 
lhat integrability beratisfied. Next, from the quantities Z~ ~ ,  0,. ~t~, B=, 
g,,. a Lppearing in (4 1),:(a.~ and (4.3) we can form the quantities 

~'= f"r (7.9) 
g u  = e=~ ea~g~ a etc. 

Then~ the change of  these quantities is given by using (7.7). From (7.7), 
(7.8) and (7,9) we get ~ e  equations (3:2). (3.4) and (3.5); In order to satis~ 
the boundary conditions Au~ -~ 0 at i~finky e=~ -+ 0 at infinity is required. 
This implies that not all vectors behavein .~he same way so far as their 
change is concerned (see (7.5) and (7.6)). Thus, we need a different prindple 
than in our previous papers. We require that the change func:tion deter- 
mines the change of  all functions in a manner depending on the way that 
the functions are constructed from e~:. The change function must deter- 
mine itself by th i / same principle. This gives rise to the fie~d equations: 
According to the rule, quantities like e~e',s have their -~' ~-- ~ a a , ~  given by 
(7.2), etc. Ttie groul~ theoretic argument is of  great importa~ce since 
other A~.; that we have tried in Section 3 all led to obvious difficulties.. 

We have thus constructed a simple aesthetic ftamework that leads to the 
field equafibns used in the compmer progra m and which uses the same 
data at the origin fo: Au~, 

~: .The non-dyr~mic metric i;ntroduced eariie~ i~ pr~erved by onhogon~ tra~forma- 



t t  h~s l_~,~.-,ome clear to  us ~hat aesthetic field eq~,ations are, by ~'hems~ves, 
not. sut~eie~L We have fotrn~ ~he sol~fions are ~ms~ too dependen~ on the 
m'igin p o i ~  da~.a. It ~ therefore ~ e c e ~  I~ i, ave 'a~thetie '  origin poir~t 
~ta.  "i-he behavior at infinRy ha~ an important role m determining t ~  
daia M the ori#no For  e~ample, the s~gn o f g  is preser~'ed by,he  fi~ld eq:ta~ 
fionso Thus,  the invaVmnce groap at  infinity c~n be u~ed to d e t . ~ n e  the 

o f g  at ~ e  origin p~;~L We have made the hypmbesis that this ~nva~- 
once group is O ' 0 )  • 7: This led us to  con~ider ~*he ea~  g = 0. However, 
g = 0 is by itself an insufficient principle as we fotmd several sets of  A,.~ v 
~;ithin g = O theory that were obviously unacceptable. This led us to the 
far-reaching hypothesis that there exists an underlying group ~structure 
that  can ~ reached through an e.~ transformation. The group was taken 
again to be 0'(3t x 7"t Such a hypothesis represents an attempt at pres- 
cribing tile da~a m at,_ aesthetic marmer~ 

From ehe fiet.4~ eq~mtie~s (~/~) and Us and *.he da~a (,CI), (4~20~ (4.3) 
and 0 . i 4 )  we find ihe fo!to'aqng rest~Its: 

(a) Bou~ded pm-~cle fi~ha-~ior (~s detewdn~di by runs d ~  the c ~  
oN~aate axes, a~ well as a r~m off *.he ~xi~ to the p o i m x  = 4-77, 
y =  2-4)o 

~ )  Absence of  any trends +,.oward s[n~.iia~fies. 
(e) Au~ becoming very smat~ in magnitude eu*.s;de the particle (this 

suggests th~A the norm-a! boundary condkions at infirmity A~- . - -0  
a_re not unlikeb;)o 

None of  fi:lese results have been obm.;ned by us pre~qcusly. This Vends to 
confirm the feeling ~hat ou r  p~s:e~: data represen~ an important :step 
tbrward in our probtem. 

A possibility exists that longer tans on the computer are necessary before 
s~fll additional par~c!e structures begin :so show up. Another possible 
inference is that our am;verse has but one particle in it and thus we have 
not been ~mskhefie enough. 
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l*ren fiee I-Ia~. 

Note  in P r o o f  

(1970). 
/n Mm-~kLn & RAng (i972a) ~ gri~ s~e u:.efi ~as ~Ot~Oi a~, ~d ~o~ ~-00~. 
In Muraski~ 0972~) the last part of equa:/o:~ 08)should r~ad .,,~," = -At,,2 
~m Mm-as_~n (1972b) delete as misleading thesente~cr im~}~;,~.r fo[fowing equa6on 

*~A-). L~ ~ e  ~m~ae paper, the fc~m ore on page 44 sho~d re.ad " , .  ~ e do have/')~ ~ 0 at 
spatiaJ a~d _terapoml h~finiUr for cerza[~ directions from the origin." Also, m the secured 
sentence ef~.e  ~ ~-a~"--aph on page 44, the wo;d "v,,ou~d" sho~fid appear es ~ 


