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Abstract

“We have locked into varicus possibilities within assthetic Seld theory, iving particnlar
attention to the case of g = 0. The g - & situation can be associated with the introdurtion
of Newtonian absolute time into aesthetic field theory. Tt can be argued that Lorentz
invariant boundary conditions for the universe are unlikely, giving fnpetus o the sindy
of g = 0. We find that the field equations had to be modified from the form that they take
when g = 0, Also, an infinite number of integrability equations have to be satisfied. We
have reguired that our data have an underlying structure that is invariant under
C3) x T.Ths sei o data appeared satisfactory with respect to integrability and gave
Tise 10 & minimum in gy a7 the origin, After a long compuier run along the coordinate
axes, we aleo found 2 bonng on our particls-like obiect, This is the firss time we have been
able 1o obtain such a resnli.

1. Imtroduction

Tn a series of papers (Muraskin, 1970, 1971z, 1971b, 1972a, 1972b, 19720,
Muraskin & Clark, 1970; Muraskin & Ring, 19722, 1972b}, we have been
studying a field theory based on mathematically aesthetic principies. We
introducded a change function and then required that the change function
determine its own change in the same manner that it causes the change of
other tensor functions. This led to the field equations for the change
function

ors
Jk
oxt
However, within the framework of such a field theory there still remains
various possibilities to consider. For example, we previously pointed out
that the integrability equations can be most simply satisfied by the con-
dition R';; = 0. Butin a separate paper (Muraskin, 1972¢), we proved local
existence also when R';,; # 0. Now, if R';, =0 at one point, it follows that
Ri,; =0 at all points, as a consequence of the field equations. Thus, the
R';; =0 and R'y, # 0 theories are distinct. Some further criterion would
be needed to decide between these two possibilities. At present we cannot
say with any assurance which situation is, @ priori, more reasonable.
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14 M, MURASERS

¥r; this paper, we shall study some other possible freedoms consistent
with the notion that the change function determines its own change.

Az for results—working with a situation where g=0, we have made 2
long-time computer run along the coordinate axes and found 2 bound on
-a particle-like object. This iz the first 1ime we have come across such results,

2. The Determinant of £is

"Ihe second-tank symmetric tensor g;; obeys the equation

‘éi%‘”‘ Iagy— Tptu=0 2.1

This eguation can be obtained by introducing four basis vectors
£ =88, 2.2}

Up to now, we have alwnys choser g, to be the Minkowski metric
{—1,-1,-1,1), and thus, the determinant of g is always negative. However,
the choice of the sign of g is not sc cut and dried and should be open to
discussion. We note, as a consequence of the field equations, the sign of g

“is preserved at all points of space-time.

Launzeos (1966) has introduced g > 0 some time ago, ar gumg that such
a choire does not exclude wave momn In our previous work (Muraskin,
19723} we found in a perturbation calculation of equation (1.1), that wave
motion appears in first order, This result was maependent of whether g
was negative or positive. Thus, we should keep in mind the pos:,xbi ity of
determinant positive. All the basic equations of the theory remain un-
changed in this case. Thus far, the difficulties with g > 0 are that it is very
miﬁczsit to find solutions of the integrability equations together with the
infinite restrictions that all invariants be zero at the arigin This fatter
condition is necessary so that the natural boundary conditions I'{, ~ O at
infinity be satisfied. At present, we have no preof that these conditions
cannot all be satisfied. _

What about determinant zero? This situation is more complicated since
g/ is now singular. This implies that it is necessary to rederive the field
equations, which we shall do later on. The field equation in thic case will
differ from (1.1).

" A reasonable boundary condition is €% — &% at infinity, and thus
815 —> 8.5 there. Another possibility is e — 0 and thus g;, — 0 at infinity.

By requiring g,; — 2., at infinity, the choice of g,4 can be related to the
invariance group at infinity. g, ={-1,—I,—1,41) is invariant under
Lorentz transformations. g, =(1,1,1,1) is invariant under four dimen-
sional rotations. Finally, g., = (1,1,1,0) which has determinant zero, is
invariant under O'(3) x T, where O'(3) describes three dimensional
rowt:onmL ‘and T refers to time translation. We note g, = (1,1,1,0) appears

{.The pnme denotes that the rotations are inhomogeneous,
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alsoin Anderson (1967 and Travtmann (1964) in the discussion o Newionian

physics using the objects g,y M. Inithie g — 0 sitwation, g, 5 also fovarant
under a2 wider group. However, as in Anderson {page 110} we may also
require that the onit vector (0,0,0, 1) be invariant under the transformation
groap. This restricts gs to '3y x T

“Thus, the choice of g, may be related to the invariance group at infinity.
In owr pm‘iﬁn‘s papLTs, Wi have CKC!?JSW&A; considered the case 515
£1,~1,~1,1}. However, it could be argued, from a fundamental point of
view, that there may be an inkerent weakness in requiring that the laws
of physics be the same for 2l inertial systems. That is, the universe has
boundary conditions which may be argued to be non-Lorentz invariant,
An alternative hypothesis is that the bﬁundafy conditions should lead to
a Newtonian absolute time. The invariance group would be ') x T
as defined by the invariance of g, = (1,1,1,0) and the time-like unif vector
0,0,0,1).

We feel that the case of g = 0 is worthy of additiona! siudy.

Although we have emphasized g, > Bas above, we do not mesn to draw
any definitive conclusions at this point inregard tothe houndary conditionz.
The situation g,,— O at infinity is still a possibility.

3. g=0Fheory

In this section we shall obtain the equations m g = 0 theory,

In cquations {1.1) and (2.1}, we note the presence of both covariant and
contravariant indices. This situation would be what one would expect #f
g, has an inverse. That is, from

Ay=giy 4 ‘ G.n

we can define 47, Suppose we are dealing with the case of g%= 0. Consider,
for example, g,;=(1,1,1,0) at a point. Then in {3.1), when i =0, we get
A® = « which is not an allowed field. We could, if we want to, introduce
independent fields 4'Y, 4,, 'y, g;,¢tc. But, this is not the simplest thing
to do. What we shall do is to only work with tensor quantities having
subscript indices.

In the system where g =0, for the change of a vector field, we write

dA; = Apix Amdx, (3.2

Note, the erder of indices in the change function A, is of no significance.
That is, if we had written instead

dd;= 6By Em dx; (3.3)

we could define A,y = &, and then get back to structure (3.2) What we
¢all the change function (A, of Ange) 1s of no importance. It will be deter-
mined by the same field equations.
In (3.2) the summation over repeated indices is understood from this
example; Ay By, =A; By + Ay B + 4385+ ApBp. ‘Thus, we are cueciive}y
15
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imtroducing 3 metric (i,1,1,1} which defines scalar products. It will be
sseumed, for the present, that this meiric, as well as the concept of dimen-
sion, are not dynarmcai quanmiea.
- The change of g,; is given by

5&1” s Bos + A B 34

The change function detc:minss its own change according to

24 |
a::i = Apjs Amir + At Aenp + Ao At B3

Consider a fonction of the feld variables that has 2 coniraction in some
index, for exarnple &; = g,; 4, Then using (3.2) and (3.4) we see that

’f-gf # Astik Bm dxk (3-6}

Thus, it appears that not all veciors are treated in the same way, so far
as theiv change is converned. This might appesr then to mean that the
g = 0 theory is Jess “aesthetic’ than the g 5 0 situation. However, on closer
serutiny, this need not be considered the case. Lot us retumnto the g 20
case. We can define B, = A4,gY 4; where g{?’ is a nondynamical metric,
such as (1,1,1.1). Then we gel 4B, # I'{ B;dx*. Thus, the conclusion is
that objects involving non-dynamical quantities do not obev the equations
aTU... %{z

— 3=+ T s Ty T D= T Ty = THe Tt

sk u=0 a6

That is, T is a function of T, g, 5 but not of gf?‘. ’Hns situation is no
different in g =0 theory. The expression B, =g,;4,ing=0 theery Means
B = gi,gJ""“’“,,. and thus, it involves-a non-dynamical quaatity. Thus, we
do not expect a relationship of the type 73.2) to hold for this Bi Aldl tens
quantities of the dynamical fields g,,, Ay A behave in a uniform manner
5o far as their change is concerned. From this fohom equations (3.2),
(3.4) and (3.5).

When g # 0 we had that all scalass were constant, In the g =0 case, we
have to be more careful. For example, we have.

04,4,
- 8x,

7

= 2/4(‘41 At!m (3'7)

“This is not, in general, zers. We could get all such guantities to be zero if
g g q .
A=Ak, {3.8)

We can see this, in general, by considering

“W“;ﬁmskl‘fw.._tm;:.."‘Amkdij D -.J.--%’_"' (3.9)



FURTHER STUDIES I ABSTHETIS FIELD THEORY 307

¥nterchanging the dummy indices m and 7 in the first term on the risht apd
using (3.8), we sge we get no contributiva from contracied mdices in
84, ;... if0x. WNote also, that if (3.5) is satisfied, expressions fike
By=g, ,A ; will obey zquations of the type (3.2).

-At any rate, thc result (3.7} is not unexpected. In g # 0 theory, if we
consider quantities with a non-dynamical metric such as 4,4, we

find its change is not zero either,
In order Tor the mixed derivatives of A, to be svmmetric, it s necessary
that
A B =0 {3.10)
where '

.Bzgmggjiﬁjdm‘—fiﬂjltm“}',Aﬁrk.dm "";?ijmﬁﬁg (3.] 1}
The mixed derivatives of g;; are symmetric if

gﬁ!‘gﬁiﬂ: + i Bvﬁjs‘e‘. =0 {3.,1:{}
The mixed derivatives of i, are symmnetric if
Amﬂt Bmipl + AzmicBm}pI 4! tm gm&ag = Q 3 3}

We note that the mixed derivatives of products of 4,, g,,, 4, 5 a7e symmearic
i (E.Z:Cﬁ (3 12y and (3.13) are satisfied. :

ifwefind 5 simple set of data that satisfies these equations we can geuerate
z more complicated sof of data by using

A= Cqigs€n Aoy (3.149
where A,;, ate the simple set of data znd e, represents a general four-

dimensional orthogonal matrix.t
The consistency equations are most simply satisfied if we take

Bxim& =0 (3‘1$

At this point we notice a complication that is absent in g # 0 theory. We
can no longer show that if (3.15) is satisficd 21 onz point, then it is satisfied
at all points. If we compute the derivative of B, we get, on using the fleld
equations

aBr imk

ax = Asti lemk + Azil an‘xﬁ: +.Asmz Bxis#.-+ fﬁ;&'i B:inu +
) .

(A-tii -+ 'Ajs!\ {AskmAtig Asmk An F Axtm AJIL - /gsik Ajl"r‘) (3~lé}

Making use of (3.15) at the origin is not sufficient to make (3.16) vanish as
well, (Although we note (3.16) does vanish if (3.8} is satisfied.}) Higher
derivatives of B, would not be expected to be zero either, in general,
Thus, the g = 0 theory is in danger of not leading to a consistent solution,
However, there is a possibility, zithough one would thmi{ rather remote,

1 If e,y —> S at infinity, A, is @ function of x so that Ax — 0 at infinity,
$ Equation (3.5) then, has 3 similar formal structure as (1.1,



218 ' ¥. MURASEIN
that there exists a set of data a3 the origin suth that ali of the derivatives of

By Just bappen to vapish, Then the g == D thedry would not have in be
discarded.

We have been working with a set of A,,, dafa ~with attractive group
theoretical properties. A,g, is required to be invariant under an O'G) x T
transformation. Our set of data has some remarkable pmperﬁ»s. For a
choice of parameiers, this set of dufs satisfies {3.13). Then, without any
further adjustments, we find (3.16) is satisfied a5 well. We have not been
able to prove that all derivatives of By, are zero at the origin analytically,
as there are sn infinite number of conditions to be satisfied. However,
what we have dong is to make a ton of 300 points down the r-axis {at -0003
grid size). Then we calculated B, nnmerically at this pc*nt using the
computer, We found that B, was zero to twelve decimal places. This
was the same arder of accuracy for which B cax WS ZETO al the origr}.
Furthermore, we ran %0 points down the x-axis with god -0003 and 80
points down the y-axis with grid 0004 and compared this situation where
the y-axis run was first and the x-axis Tun was sscond. We got agreement
for alf A, and g,; to twelve decimal places. These tesis were also repeated
periciically during our long runs. We found B, was Zere in all cases
again to the crder of twelve decimal places.t Thus, these resuls stromgly
imply that pur group theorstical data does, in fact, lead to an acceptable
g =0 theory, so far as imicgrability is concerned even though we have not
been able to give a rigorous proot of local existence.

To further in vestigate this problem of imte g~ »hility, we consider another
set of A,,, data given by

Apg=-1 Aspz=+1  Ays=-+1 . Aje=-1
Auix—i'l . Aigz-‘zt'fl g1123m~} A:z&*—’?i
A==l Aga=H1  Agy=tl A=t
Agr=+1  Aygp==1 = Ajg=-1  djo=-+]
Ay =-1  Ayy=+1 Apz=+1 Azze=~1
A=+ Agp=-—1  Apy=-1 - dye=+1
“;1"231 = ‘—é, 21232 = Ti izzs = ‘%‘i :’izso =]
ZO"‘,+ 027 " 203 = — IZQOa"‘!'
Asy=-1 Az =-+1 Azgy=-1 Ao =+1 (3:17)
A321 = ‘TI . 113i2 == —] A323 — +I /i320 — "‘I
ASBI .‘:'1"'1 A332 =] A333 = +1 ASSG = -1
ABD! =~} Agc_g == -+ A303 =] AB{,‘G =-t]
don=1 A=t dop=-l  dog=il
Agas = +1 Agzr =—1 Agzy=+1 Agag =—1
AOS} =+l A032 =-1 A033 =+1 ‘4030 =}
Agoy =1 Agoz = +1 Agga=—1  Agga=+1

This set of data obeys {3.15) but not (3.16). 'Amt.;er s¢t of data that satisfies
(3.15) but pot {3.16) has the fo!!owmg non-vanishing A,z Ayzs, Ayz0s

4 o mals Mk wre shall call this et

T RSSO, WO SARN QXIS SO IRDICE Z0Curacy

LIECY.
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Ayizs Azie. Asas, Agoo. Furthermore, after an e, transformation and a ron
of 300 points down the x-axis, {3.13) was not satisfied by either Gata. Thus,
the conclusion is that, in general, we cannot expect integrability to be
satisfied in g = 0 theory even when (3.15) is satisfied at-the origin.

‘We may next ask whether there are other sets of A,,, other than our group
theoretical data for which (3.16} holds and B, =0 is preserved away

from the origin with computer accuracy, The answer is that there are. An

LEngs et LG e & sdar Sdasd v

example is the following.

Ay =4 A= Aysz= s Ajgo= o
Appy=d, Am=¢ Ay “":én Aszo=1tb3
Ayzs =3 Ay = ¢y Ayzy = ¢1‘ Ao =02
AlOl = ¢'o Amz = &3 «’iw; == 4’2 Am@ = 43‘1

1=z Az = ¢ Agsa =g Azo=¢3
Api=0¢y  Ap=¢; Az =3 Agzp=thy
Azay = ‘150 ) Azsz = (bs’ Azza= ¢z Azzo = ¢A
Azgy = ¢3 Azor = ¢o Azps = ¢1 Ajop == 452
Aggs = ¢ Azz = Az3 =0y Azjo =9,
Asz =g Azzz=¢a Aszpz = 952 Aszo =
:’Qg:sx =gy Azgy = 3 Axzz =3 - Aszo = o
Azpr = 4’2 Argy =y Azps = {153 Asge = @3
-Amjz"‘*"@a Agy =9 Aoy =, Agse =@
Aggy=y Agn=2p . Aps=4¢ Auzz= ¢,
Agzi= ¢ Agaz =y Apss=¢o . Ane=1¢3
Agor= ¢ Agoz = 2 Aoz = ¢3 Agoo== o

This data obeys the integrability equations to computer accuracy. However,
there is an obvious difficulty with this data. We note 1, is symmetric in all
indices. This symmetry is praserved by an e, transformation and by the field
equations. Now, if we write out the field equations for 4,4,/8x,, we see,
using the symmetry of A, ;. that the right-hand side is made up of terms
which are all squares. Thus, A4,,, will continue to increase monotonically
as we move down the positive axis, leading to a singularity. Thus, not al
data satisfving the integrability equations (to computer accuracy} will be
acceptabie. With our group theoretical dara, it is not obvious at the outset,
one way or another, whether a singularity will develop. We will have to
make long runs away from the origin 1o see what the trends are.

As in our previous work, we seek a minimum (maximum) in gee. At the
origin, for simplicity we will work with g;; =(1,1,1,0).% Using {3.4) we
get (@=1,2,3) '

0200 .
. 0 {3.18)

t Strictly speaking, we should use (7.9) rather than g,;=(1,1,1,0) at the origin.
However, it is much simpler to work with g, = (1,1, 1,0), and we shall do so here: Note,
Az are not affectad by our choice of the value of gy, at the origin.

-
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Thus, goe is automatically an extremum if we use g, ~(1,1L,1,0) fnote,
020n/Bx, comes out 1o be zero as well). From the Beld equaticns (3.4) and
Q. 3), we pet at the origin

@ ,
24,= ";% = As00 A10s + Az0a Azoe -+ Asos Azos) 3.19
) 3

2x, 0.
The conditivns for 2 minimum are »
Ay + Azp + A3y >0 {3.202)
Ay An—~ (AP + Ao daz~ (AP + Ay 4y ~ (AP >0 3200)
gt 4> G {3200}
We define
Gy = Asge
by = Az B3.21;
= A0

Using {2.18) and (3.21) we o that {3.20a) is SaﬂaﬁEd ifa,, b, c,are not all
zerc. {3.20b) and (3.20¢) becoms

(@ by~ a3 B P+ (a2l = Ba@ P 4 {8162 — 68,7 + iy e~ a0 (3.223)

+%3¥3”53¥3} “1"({7; fz‘”bsfx}z"*‘{éif_?” '{2“1‘5’2““(%43“52‘215 -
'*'(azb:s By, > 8

iai b, ﬁjé_
2 by o #0 (3.27%)
@ &, ng

Thus, ifa, b, care not multipies of one another, then we will have a minimum
at the origin for gog. gog van never be 2 maximumonce wetake g, ; = (1,1,1,0)
at the origin since (3.20a) is the sum of squares and is always positive. The
significance of this result is not clear. It is true that in gravitational theory
one can have only one sign of mass. But it is certainly premature to draw
any coaclusion at this siage in our case.

Note, it is not so simple 2 matter to obtain a minimum for gge. For
example, consider the data given by (3.17) as well as the case when A,,3,
Asize Azios Agzas Aszse Aooo are the only non-zero A,,,. Both cases give
rise to (after an ¢,; transformation in each case}

ia,. by ¢
‘52 b; ng =0 (3.23}
»las by 6
to twelve decimal places at least, Thus ~we get no minimum in ggo at the
origin here,

We shall find, on_the other hapd that our group theoretical data does
give tise to 2 minimum’in gog at the origin.
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4. Group Theovetical Doty

e

Al tins poini we display our group theoretical data

ﬁm ”"gs,sﬂév + gsr?gii + o 91’.5 + ‘gzg‘*!ﬂﬁ? + M B iy (4".5}
with
f1 &8 ¢ 0
piae
£5=lp 0 1 0 @3
& 6 O 0
aad '
D=0 o=ty =By =p=C a=1,2,3 .3;

£,.4, 1S the antisymmetric tensor, We assume the structure (4.1}, {4.2} and
{4.3) exists at all peints {although for our practical numerical work we only
need this structure at the origin) so our data would be invariant upder
&'(3) x 7. Equation (3.15) is satisfied if Yo = g, By =g, Yo =3¢,
U = . The particular pumbers we have chosen for our computer work
are By =1, 8p=~1, ¥p==+1, g = —%. Wiih these choices we found, after
an e, transformation, that (3.76) was 2270 10 coOmMpRier A05UTALY, £,, 15 made
orthogenal by requiring
&yy = A~ pr-+ mp — ny
ez =In+pl-rap+ oy
&y =—Iy + pyt — nd + mz
Eyp ==~ — Py -+ 1T+ mi
€3y = —ph— ul -+ my-+ny
Byy = —pa + A —myu+my
ey =pv+lut+mi+tnn
ey =pp—Iv—ma+nl

ey =nh+mi+ly+pp S
e =nm—mAi— pl+py
ey =—nv—rmp+1l+pn
€30 =—ny +mv—In+ pl
eoy = —ml+ n —vp'+ il
€gp =—MT = HA + pu -+ Iv
8oy =V — Mt — pA -+ in
o = Miji + nv +pr 14
with
p"—‘&/(l—-"”'“mz‘”z) (4.5)
m= (1~ & - g2
Then we get
€a18qy =01y 4.6

€a;€4: = 5«5
Equation (4.6} was checked on the computer for.all our choices of para-
- meters. The parameters that we finally chose to work with are

I=7 m=-4 3n=3 ‘i=1 a=-5 v=3 &7
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We also took gy, == {1,1,1,0) ai the origin 50 as to make vse of our go
minimum equations. This set of data then leads to 2 minimum in gq, at
the origin point.

In our previous computer runs in g # 0 theory, a general transformation
fed to situations where all sixty-four I}, were different. In the present case,
after an e, transformation, we see this is not the case. There are only eight
diffevent A, Al the vemaining A, are repeats. We can take the different
Aiptobe Agyy, Agags Arans Arers Anras Aszze sz Age. Furthermore, some
of these A, are constant multiples of other members of the set. This has
been demonstrated to computer socuracy, after rinning down the differem
axes. It has been found thai 34,,, = Ay5;, 34,05 = A2, 350> Higss
Agza== 34,5, Thus, cut of the sixty-four A, there are four independent
components. This result is a4 consequence of our choice of 4,,,. When we
fook the example of 433, 41200 Az13. A216: A333; Asco a5 the only nst
vanishing 4,,, components, we got sixty-four dxsimct A,y after the same
e,z transformatmn“ i

s this diminishing of independent componenis an asset or Iiability?
'h"« s difficult 1o say. T may be that shav-four pieces of information at
the otigin is too much. The spirit of thw present savestigation is to seek
out possibilities sonsisieni with the notion thay the ,,Lang,: fupetion doter-
mines its own change. The number of paramerers 1o be specﬁ..d at the
origin is pot something that «2 can make definitive statements about at
this time.

S. Biscussios

In our work on aesthetic field theory, thus far, we have brought up (with
varying degrees of discussion) several possibilities consistent with the
program that the change function determines its own change. They are:

@) R'yg=0o0r Ry, #0

{b) g positive, negative or zero.

(¢) Symmetry restrictions on the change function, such as A = —4,.

(d) Higher dimensions (Muraskin, 1972b).

(&) Number of pieces of independent data that have to be supplied at
the origin.

(f) Introduction of non-dynamical concepts such as metric and dimen-
sion, .

These different possibilitics when characterized by an exact set of data
at the origin point, serve to define a universe, whether it is corroct or not.
If we could find a universe in which interesting things happen, this would
be our immediate aim. We have already "”oz.m in our previous work, some
universes to be more interesting than oth TS, For example, we presented a-
choice of data in Muraskin & Ring {1972a) which led 10 2 minimum in zg,.
Other data used in Muraskin (1 972b) did not fead 1o 2 maximum (minimumj
in go anywhere, There is hope that we might find 2 set of data for which 2
bounded particle exists. If, in the future, we ever found more than one
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perticle, then we could sec how they move with tespect to one another
enabling us to iInvestigate force laws, These force faws could he ez:tm?aﬁé
with phenomena in the real world. The aesthetic field theory with all us
distinct possihilities offers us a potential laboratory of universes which we
can study with the hope of uncovering 2 world containing reasonable
particle-like behavior.

At the moment, we have no ron-cled criterion to 1sll vs which possibility
mentioned shove is most likelv. Nor do we know how to choose the daiz
5o as {0 zet optimumn results for each of the possibilities. MNevertheless, at
the moment, we see 1o other practical program than to try ont different
things and see what can be learmned. We would like to systematically try
out 21l the possibilities with the computer. However, the difficulty is that
it is not 2 simple matter to find solutions to the integrability cquations
which azre 444 non-linear algebraic sgvations in the R, £ 0 situation
and 96 nen-linear equations when Riy, =€ {z+0 in both instances),
We also have an infinite number of boundary restrictions when g+ 4.
We have found in previous papers that there exists solutions 1o the integ-
rability equation such that 2ll invariants involving I'}, are zero at infinity.
However, in no case have we found any acceptable solutions for one reason
o another. ,

In the g = § situation there are an inhnse number of integrability equa-
tions that have to be satisfied. QOur group ineoretic data satisfied these
cqm*ons 10 computer accuracy. We alvo have a minimem in gy 21 the
origin. We next discuss long-time runs or the computer in which we Jooked
for a bound to the particls-like behavior,

i

6. Computer Results

Qur data (4.1), (4.2) and (4.2) has led to an improvement cver
in previous papers. In our previcus icmg time computer run {4
Ring, 1972a), we found a monotonic change of 2li fisld
throughout the entire run. That is, those components that 3
bigger (smaller} continued to do so at an ever-increasing rate. Thus, no
bound was found on the particle-like structure. Note, the data used in this
case can be shown to v:oiate the boundary condition I} — 0 at irfinity.

On the other hand, a long-time run down the x-axis using our data
(4.1), (4.2) and (4.3) did lead to 2 bound on our particle, At x = 0, we had
Loo = 0. This increased to -273 (round»d offyat x =2-178. We used a grid
size of -0002 in reaching-this point. This took about 7 hours of running time
to reach. After this point, gy staried to decrease with a slow rate, and
continued to do so t‘m}hgh{wt the rest of the run. At x =297, gos had
the value 264. At x =4-77 #t had thé value -230. We note aiso that Ay,
which started off at —133, decreased to —181 at x == -45, and then started
to increase again. Thus, a second new feature (in addition teo the bound on

the goo particle) is that A, components were not monotonic. In fact, over
(rr\a vq,ﬂ-rar-‘hnn undfis ef fhn nrxrr;nia Ml QR e b i . T hﬁd xyn
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turnabout pomts Agais Aua,, Ao each had one twrnabout peint. Firaily
another interesiing result emerped, Outude the particle all A, tended
monotonicaily towards zero. At x =0 we had

Aqyy =133

Ay =122

Ay, = —483

gy =—T11
As x=4T7 the values of these guantities were (we used progressively larger
grids as the fields got smaller}

L
AIZI = """0055
Ai31 == _"0175

Aygy ==—0280 -

Next, we ran down the other axes. We found 3 bound in each direction.
The turnabout point for go and the value of g,, at the turnabout point are
given below , .
x=2178  go=-273
x=-]38 goo =729

y=IB g =413
Z=228 Zop =23

7==1314  gop = 802

The qualitative results for these axes were similar to the reenlts for the
x-axis. Our longest un was down the x-axis {see above).

All 4, decreased in magnitude along the xg-axis. Along the —xg-axis
aill A;x began to increase in magnitude but eveptually they began to
decrease.

We also at x = 4-77 ran along the y-axis to y = 2-4. 4., A131, Ajo; Were
smaller in magnitude than what they were a1 x = 477. .4,,, was bigger in
magnitude. But its rate of increase was already slowing down at this point—

Thus, all the evidence points to a localized particle obiect associated
with ggo surrcunded by a ‘vacuum’ where the A, get smal!

At this point we cannot say wherher we have a univers r
in it, and in which A,y tends to zero at infinity or whether ructure
will develop farther from the origin. The fact that A, gels smaller as we
go- farther from the origin does not mean that A, will continue in this
fashion with still longer computer runs. That is, 2 set of small 4;,, need
not get smaller. To illustrate this, if we run backwards towards the origin
the small A;;, will get larger.

tven if there were but a single particle in our universe, the results would
still be remarkabie in the following sense. A problem with g = 0 field theory
is that we have no handle on the behavior of A, at infinity. When g # 0

we can at least require all T}, invariants be zero at the origin which is
np-(\gscanr for I't. —~ 0 at infinitv, ROTF if g = O theory, we do not have this
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handle on the boundary vonditions since invariants are not 2610 any more,
A possible interpretation we can extract from our computer work is that
A tends to zero at infinity without the need of i rmposmg additional
conditions on the theory.

We can say that our parficle is s good as that of Rosen (1966), Born &
Infeid (1934) or Anderson & Derrick (1970). Cur more structured
particle differs from theirs in that ¥t 7s not spherically symmetsic, It should
also be noted that our particle emerges out of 2 mathematicall ty mesihetic
program rather than from ad koc field equations. Also there is a possibility
that an additional structure will 2ppear with longer-time computer runs.

We have inferred the existence of a bounded particls-like object from
computer runs along the coordinate axes. Strictly speaking, we ‘should
map out regions surrounding the origin. Limitations on computer time
are z factor here, if we wish to maintain the kind of numerical accuracy
we have heen getting up to now.}

1. Biscussion

In order to obiain the computer resulis we seed only to assume the data
given by (4.1}, (4.2}, {43} znd (3.14) 21 pne poin: 2nd then we generated
the field at all points using the field equations (3.4)and (3.5} Tn view of the
rather remarkable numerical resulis we have thamed we may ask
whether there are basic principles at work, With this in mind, we hase
made Lhe hypothesm thai the unciﬂrsymﬂ stroctund ic"harammzm By Zags

We have supposed that Az, 18 »oas{am Then, in order for A, - 0 at
infinity we must require e,; — 0 at infinity. We have from (3.2}

= Antk Com U‘I)

-We have taken (4.6) to hold at the origin. We can now see that it does not
hold at all points. From (7.1) we get at the origin where we may use 14.6)
a(eai ez})
ox,
Our data (4.1), (4.2) and (4.3) dces not satisfy A, = —A,,. 1nus, (7.2)
is net zero. Similarly we gat
9(eases7)
.axk'
The fact that (7.2} and (7.3} are not zero is essertial. Otherwise we would
get an incorsistency with the boundary condition A, — 0 at infinity.
This is because from

== Ajgg *Aijk {7.2)

=gt CamlAmix + Aimi) (1.3)

é’;:es,( =8y ) (7.4
Cyi eﬁg =‘51ﬂ

T We did, however, make a run 1o the point x = 477; y = 24 as discussed previously.
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we gel dete,, = e = 1, and thus e, could 1ot go 16 zere at infinity and sull
have determinant one,

I Sectivn 3 we discussed the e,; 5 0 21 infinity g =0 situation. This
present section examines g =0 when 4 sy hss the structure given by (4.1),
4.2} and (4.3). We can reloek at one of the problems that came up before
we introduced (4.1), (4.2) and {4.3). We remember that contracted quantities
have a different sort of change equation than we might naively suspect
For example, ¢, = g A does not act ike 8 vector with vespect to iis
change. This'is the way it should be. We may see this if we express evervthing
in terms of ¢,;. We then get for the change of ¢, ihe following

d(eﬂ eﬂm gzxﬁ eﬁ eam e).k Aaph) CLS}
But this is not the same as
| | dlepgup Aus) )
SINCE €€, 1S 1101 8 constant.y
In the ;aiiﬁwiﬁg, we shall summarize our basic approach. We have
intreduced 2 change function thai deswibes the change of a basis vector
set of fields o, azcording to

degr= Ruipants a7n
The simplest way we can expres: the A, in terms of the basis vectnrs
A= €z18p;Cyp Augy (7.8}

with A, constant. We next require that A,,, be invariant under the trans-
formation O'(3) x 7. A A,,, that does this, and is constructed from 2 g,;
having determinant zero, is given by (4.1}, (4.2) and (4.3}, We require
that integrability be.ratisfied. Next, from the quantities g, 92, 65 Vo B
£.p appearing in (4 1),(4.2) and (4.3) we can form the quantities

¢l — f’at¢a

) gu = €215 8as eic. @9
Then, the change of these quantities is given by using (7.7). From (7.7},
(7.8 and (7.9) we get the eguations (3:2), (3.4} and (3.5): In order to satisfy
the boundary conditions 4, — 0 at infinity 2, — 0 at infinity is required.
This implies that not all vectors behave in the same way so far as their
change is concerned (see (7.5) and (7.6)). Thus, we need a different principle
than in our previous papers. We reguire that the change function deter-
mines the change of all functions in a manner depending on the way that
the functions are constructed from e,;. The change function must deter-
mine iiself by this same primip{e This gives rise to the Geld equanms.
According to the rule, quantities like Exi€sj have their »na'xge given by
(7.2), etc. The group theoretic argument is of great importance since
other A,;, that we have tried in Ssction 3 all led to “obvious difficulties..
We have thus constructed a simple aesthetic framework that eads to the
field equations used in the compuier program 2nd which uses the same
data at the origin for 4.
+.The noa-d}'taxms, mietric introduced eatlier is preserved by orthogonal transforma-

tions; In this section £, i5 not orthogonal 530 we shall nol intreduce suchr» concept here,
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8. Conclusions

¥t has become clear 1o us that sesthetic field equations are, by themselves,
not sufficient. We have found the solutions are just oo dependent on the
grigin point data. It is therefoxe necessary 1o have ‘aesthetic” origin point
data. The behavior at infinity has an importam role n determining the
daia at the origin. For example, the sign of g is preserved by the field equa-
tions, Thus, the invariance group at infinity can be used to determine the
sign of p 2t the origie point. We have mads the hypotbesis that this fnvari
ance group is O'(3) x 7. This led us to consider the case g= 0. Howeves,
#=01is by itself an insufficient principle as we found several sets of 4,4,
within g = 0 theory that were obviously unacceptable. This led us to the
far-reaching hypothesis that there exists an underlying group structure
that can be reached through an e,; transformation. The group was taken
again to be O°'(N = It ‘inch a hypothesis represents an at‘mmpt at pres-
cribing the data m an agsthetic manner,

From the Seld equations (3.0 and 2.35; and the datz (415, @), 4.3)
and (3.14) we find the fsiicwnﬁ' results,

g

{a) Pounded particie behavior {as determined by runs down the oo
ordinate axes, as wcll as 2 yun off the 2xis to the point x=4-77,
= 2-4),
{t} Absence of any trends toward stugularities.
(c) A, becoming very small in magnitude outside the particle (this
suggests that ‘the natural bnuzlmu ; comditions at infinity 4,; -0
_are not unlikely).

None of these results have been obtained by us previcusly. This tends to
confirm the feeling that our present data represent an muportant step
forward in our prob!-:m. )

A possibility exists that longzr runs on the computer are necessary before
still-additional particle structures begin to show up. Another possible
inference is that our universe has but one pariicle in it 2nd thus we have
not been aesthetic epough
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Note in Proof
We would ke 4o draw aticotion o an ervala (o be found o famaly of Physics §5, 260
(1970).
In Muraskin & Ring (19723) the gna stee used was 30005 avd not 001
In Muraskin (1972s) the last part of equation (18) should rea =~ Ay

In Muoraskin {1972b) delete as misteading the sentence immed lowing equation
(2.8}, Ins the same paper, the feotniote on page 44 should read - . we do have I e > 3 at
spatial and temporal {nfinity for cermain directions from the origin.’ Also, in the second
sentence of the Inst paragraph on page 44, the word “wonld’ should appear as “could”.



